На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:
математика
сфероидальный угол (угол на сфероидальной поверхности)
['æŋg(ə)l]
общая лексика
угол
удить
аспект
сторона
ракурс
угловой профиль
уголок
угловая сталь
угловой прокат
угольник
строительное дело
уголок, уголковый профиль
нефтегазовая промышленность
уголок (вид профиля)
существительное
['æŋg(ə)l]
общая лексика
угол
рыболовные снасти
положение, ситуация
угловой
разговорное выражение
точка зрения
угол зрения
подход
сторона
аспект (вопроса, дела и т. п.)
оттенок
тон
настрой (в журналистике)
сленг
выгодное дельце
(лёгкий) барыш
хитрость
уловка
неэтичный поступок
обходной манёвр
угольник
угломер
угловой шаблон
техника
уголок
угловое железо (профиль металла)
устаревшее выражение
рыболовный крючок
глагол
['æŋg(ə)l]
общая лексика
двигаться или наклоняться под углом
(резко) сворачивать
(внезапно) поворачивать
помещать
размещать под углом или по углам
располагаться под углом
образовывать угол
писать тенденциозно или в расчёте на какую-л. группу читателей
подавать под каким-л. углом зрения (в журналистике)
удить рыбу
ловить рыбу на удочку
(for) добиваться (чего-л. - обыкн. нечестными путями, интригами)
зондировать почву (насчёт чего-л.)
искажать (рассказ, события)
авиация
лететь с углом сноса
в переносном значении
закидывать удочку
строительное дело
угол поворота
угол поворота сечения
Oblate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the non-focal axis of the ellipse, i.e., the symmetry axis that separates the foci. Thus, the two foci are transformed into a ring of radius in the x-y plane. (Rotation about the other axis produces prolate spheroidal coordinates.) Oblate spheroidal coordinates can also be considered as a limiting case of ellipsoidal coordinates in which the two largest semi-axes are equal in length.
Oblate spheroidal coordinates are often useful in solving partial differential equations when the boundary conditions are defined on an oblate spheroid or a hyperboloid of revolution. For example, they played an important role in the calculation of the Perrin friction factors, which contributed to the awarding of the 1926 Nobel Prize in Physics to Jean Baptiste Perrin. These friction factors determine the rotational diffusion of molecules, which affects the feasibility of many techniques such as protein NMR and from which the hydrodynamic volume and shape of molecules can be inferred. Oblate spheroidal coordinates are also useful in problems of electromagnetism (e.g., dielectric constant of charged oblate molecules), acoustics (e.g., scattering of sound through a circular hole), fluid dynamics (e.g., the flow of water through a firehose nozzle) and the diffusion of materials and heat (e.g., cooling of a red-hot coin in a water bath)